The widespread use of unmanned aerial vehicles during warfare has intensified the problem of their management, especially when they are used in large groups. One of the main tasks is to ensure coordinated movement of the group's aircraft in space. Optimizing the movement of each device of the group in three-dimensional space is expedient to use mathematical models. The movement of any unmanned aerial vehicle can be presented as a combination of translational and rotational movements, and its speed as a combination of translational and rotational velocities. Previously, these movements were modeled separately using a system of differential equations or quaternions. In this article, a mathematical model of rotational and translational movements of an aircraft based on the algebra of dual quaternions is developed. Dual quaternions consisting of eight scalars are a compact representation of rigid transformations in space. Therefore, their properties determine the advantage in the course of motion simulation, as they reduce the amount of calculations. Thus, with the help of one dual quaternion, it is possible to provide both translational and rotational motions at once, and the operation of non-commutative multiplication of dual quaternions is used to simulate the movement. The model assumes that the real part of the dual quaternion determines the orientation of the UAV in space, and the dual part determines its position in three-dimensional space. In order to connect aircraft coordinate systems with the model, expressions for the transition from aircraft orientation angles (roll, yaw, and pitch) to dual quaternion parameters and vice versa are obtained. The functionality of the proposed model was confirmed using the developed software for modeling the coordinated movement of aircraft. The software is adapted for graphical display of a large number of aircraft in web browsers with WebGl support. Keywords: motion modeling; rotational and translational movement; unmanned aerial vehicles; quaternions; dual quaternions; algebra of quaternions.
Read full abstract