Abstract The possibilities for limit functions on a Fatou component for the iteration of a single polynomial or rational function are well understood and quite restricted. In non-autonomous iteration, where one considers compositions of arbitrary polynomials with suitably bounded degrees and coefficients, one should observe a far greater range of behavior. We show this is indeed the case and we exhibit a bounded sequence of quadratic polynomials which has a bounded Fatou component on which one obtains as limit functions every member of the classical Schlicht family of normalized univalent functions on the unit disc. The proof is based on quasiconformal surgery and the use of high iterates of a quadratic polynomial with a Siegel disc which closely approximate the identity on compact subsets. Careful bookkeeping using the hyperbolic metric is required to control the errors in approximating the desired limit functions and ensure that these errors ultimately tend to zero.
Read full abstract