Abstract

I. N. Baker established the existence of Fatou component with any given finite connectivity by the method of quasi-conformal surgery. M. Shishikura suggested giving an explicit rational map which has a Fatou component with finite connectivity greater than 2. In this paper, considering a family of rational mapsRz,tthat A. F. Beardon proposed, we prove thatRz,thas Fatou components with connectivities 3 and 5 for anyt∈0,1/12. Furthermore, there existst∈0,1/12such thatRz,thas Fatou components with connectivity nine.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.