In this paper, the modulated laser-induced excess minority carrier density wave (CDW) of bipolar semiconductor is developed. An analytical expression of CDW in frequency domain is introduced. The numerical simulations are carried out to analyze the effects of minority carrier transport parameters (minority carrier lifetime, diffusion coefficient, and two surfaces recombination velocities) on response of laser-induced photocarrier radiometry (PCR) signal to frequency for semiconductor silicon wafer. The PCR amplitude increases with increasing the minority carrier lifetime, and decreased with increasing the carrier diffusion coefficient and surface recombination velocity. In contrast, the PCR phase lag decreases with increasing the minority carrier lifetime, and increases with increasing the carrier diffusion coefficient and surface recombination velocity. The silicon (Si) wafer with an artificial defect (mechanical scratch) on the surface is experimentally investigated by PCR scanning image system. The distribution maps of the minority carrier transport parameters are obtained by best-fitting method which is based on the carrier density wave analytical expression, and the influences of the artificial defect on carrier transport parameters are discussed in detail. The experimental results indicate that the surface recombination velocity and carrier diffusivity at artificial damaged location are dramatically increased compared with those in the healthy region. The carrier bulk lifetime of whole Si wafer is obtained to be about 38.33 μs by PCR scanning image measurements. Simultaneously, quasi steady-state photoconductance (QSSPC) method is used to measure the carrier effective lifetime of Si wafer, and it is about 33.85 μs. Therefore, the carrier bulk lifetime of Si wafer by PCR scanning image measurement is in good agreement with the QSSPC measurement. However, QSSPC measurement could obtain only the carrier effective lifetime of Si wafer. Furthermore, PCR scanning image measurement can be employed to measure the carrier transport parameters with high resolution in comparison with QSSPC measurement, and to evaluate the localized imperfection.
Read full abstract