A novel triaxial isotropy origami metamaterial with dual-platform is proposed by combining the tachi tubes and the honeycomb structures. Crushing responses of the hexahedral metamaterial under quasi-static compression load are investigated through experimental tests and numerical simulations. Experimental and numerical results reveal that the hexahedral metamaterial sample shows three deformation modes. Meanwhile, the numerical predictions of deformation modes and locations agree very well with the experimental results. Moreover, the effect of aspect ratio, thickness-to-span ratio, angle on the deformation mode, peak stress, plateau stress of different stages, and specific energy absorption (SEAM, SEAV) is investigated. Finally, the proposed metamaterial is compared with traditional honeycomb. The numerical results demonstrate that the SEAM of the hexahedral metamaterial is 90.6% of the traditional honeycomb in the Z-direction. However, during X/Y-direction compression, the energy absorption capacity of the hexahedral metamaterial is 13.0 and 12.2 times that of the traditional honeycomb, respectively.
Read full abstract