It is time-consuming to conduct conventional hydraulic fatigue testing up to the very-high cycle fatigue (VHCF, N (number of cycles) ≥ 108) regime. Ultrasonic fatigue testing has been proposed as an accelerated alternative method. In this study, ultrasonic fatigue testing was conducted on interlaminar toughened quasi-isotropic carbon-fiber reinforced plastic (CFRP) laminates to evaluate the characteristics and mechanism of fatigue up to the VHCF regime. Hydraulic fatigue tests were conducted at the same stress ratio as a comparison. The resulting S–N diagrams showed a lower fatigue strength and different fatigue mechanisms for specimens subjected to ultrasonic fatigue tests compared with those subjected to hydraulic fatigue tests. The observed growth of the matrix crack density in each laminate layer was used to perform a shear-lag analysis to calculate the energy release rate considering off-axis matrix cracks. The results suggested different damage growth behaviors for specimens subjected to ultrasonic and conventional fatigue tests.