The evolution of single-particle strengths as the neutron-to-proton asymmetry changes informs us of the importance of short- and long-range correlations in nuclei and has therefore been extensively studied for the last two decades. Surprisingly, the strong asymmetry dependence of these strengths and their extreme values for highly asymmetric nuclei inferred from knockout reaction measurements on a target nucleus are not consistent with what is extracted from electron-induced, transfer, and quasi-free reaction data, constituting a two-decade old puzzle. This work presents the first consistent analysis of one-nucleon transfer and one-nucleon knockout data, in which theoretical uncertainties associated with the nucleon-nucleus effective interactions considered in the reaction models are quantified using a Bayesian analysis. Our results demonstrate that, taking into account these uncertainties, the spectroscopic strengths of loosely bound nucleons extracted from both probes agree with each other and, although there are still discrepancies for deeply bound nucleons, the slope of the asymmetry dependence of the single-particle strengths inferred from transfer and knockout reactions are consistent within 1σ. Both probes are consistent with a small asymmetry dependence of these strengths. The uncertainties obtained in this work represent a lower bound and are already significantly larger than the original estimates.