The Late Devonian Tsagaan Suvarga deposit (255 Mt at 0.55% Cu, 0.02% Mo) is located on the NW margin of the Tsagaan Suvarga Complex (TSC), which extends ENE over 15 × 10 km and comprises mainly medium-grained equigranular hornblende-biotite quartz monzonite and monzodiorite. Distinct mineralized intrusions are inferred from distribution of Cu–Mo mineralization but are not clearly discernible. The Tsagaan Suvarga Complex is a window within Carboniferous volcanic and sedimentary rocks, and wall rocks to the TSC are not known or exposed in the nearby district. Whole-rock analyses and Sr–Nd isotopes, 87Sr/86Sr0 = 0.7027 to 0.7038 (n = 12) and eNd0 = + 4.26 to + 2.77 (n = 12), show that the granitoids are subduction-related I-type, high K-calc-alkaline to shoshonitic series and derived from a mantle source. They exhibit fractionated light rare earth elements, without depleted Eu and depleted middle heavy rare earth elements and Y, typical of oxidized, fertile porphyry magmatic suites. Early porphyry-style quartz veins include A- and B-type. Molybdenite occurs in monomineralic veins (1–5 mm) or A veins. Copper mineralization occurs mainly as chalcopyrite and subordinate bornite, disseminated and associated with quartz–muscovite veins. Pyrite (vol%) content is less than chalcopyrite and bornite combined. Deep oxidation to about 50 m depth has formed zones of malachite and covellite in late fractures. The most important alteration is actinolite–biotite–chlorite–magnetite replacing hornblende and primary biotite. Quartz–K-feldspar alteration is minor. Late albite replaces primary K-feldspar and enhances sodic rims on plagioclase crystals. Quartz–muscovite (or sericitic alteration) overprints actinolite–biotite and porphyry-type quartz veins. Field observations and petrographic studies suggest that the bulk of the chalcopyrite–bornite mineralization at the Tsagaan Suvarga formed together with coarse muscovite alteration.