A new surfactant butane-3-heptyloxy-1,2-diamine [CH3(CH2)6OCH(CH3)CH(NH2)CH2NH2; BHLD] was synthesized. It has been innovatively used as a collector in the flotation of quartz. In this present study, the flotation behaviors of quartz with BHLD were investigated by micro-flotation of quartz. It was found that the recovery of the quartz reaches 98.9%. Furthermore, the hydrogen bond lengths were measured, calculated and simulated in a molecular dynamics (MD) model, and the interaction energy between the four species of BHLD and the quartz surface were determined under vacuum and aqueous conditions. Based on the results of the zeta potential measurements, the FT-IR measurements and the MD simulation in this paper, it is revealed that the BHLD collector adsorbs onto the quartz surface through electrostatic adsorption and hydrogen bond adsorption. Furthermore, micro-flotations were studied by the radial distribution function (RDF) and the relative concentrations. The results show that the hydrogen bond adsorption between the O atom on the quartz surface and the H atom in BHLD are the main interactive forces causing BHLD to adsorb onto the quartz surface. The BHLD cations adsorb significantly more strongly than the BHLD molecules, which agrees well with the results of the micro-flotation tests.