We observed non-exponential relaxation for a quantum tunneling molecular magnetic system at very low temperatures and argue that it results from evolving intermolecular dipole fields. At the very beginning of the relaxation, the magnetization follows a square-root time dependence. A simple model is developed for the intermediate time range that is in good agreement with the data over 4 decades in time. Detailed numerical calculations as well as measurements are presented which indicate unusual correlation effects in these systems.