In recent decades, covalent inhibitors have emerged as a promising strategy for therapeutic development, leveraging their unique mechanism of forming covalent bonds with target proteins. This approach offers advantages such as prolonged drug efficacy, precise targeting, and the potential to overcome resistance. However, the inherent reactivity of covalent compounds presents significant challenges, leading to off-target effects and toxicities. Accurately predicting and modulating this reactivity have become a critical focus in the field. In this work, we compiled a data set of 419 cysteine-targeted covalent compounds and their reactivity through an extensive literature review. Employing machine learning, deep learning, and quantum mechanical calculations, we evaluated the intrinsic reactivity of the covalent compounds. Our FP-Stack models demonstrated robust Pearson and Spearman correlations of approximately 0.80 and 0.75 on the test set, respectively. This empowers rapid and accurate reactivity predictions, significantly reducing computational costs and streamlining structural handling and experimental procedures. Experimental validation on acrylamide compounds underscored the predictive efficacy of our model. This study presents an efficient computational tool for the reactivity prediction of covalent compounds and is expected to offer valuable insights for guiding covalent drug discovery and development.
Read full abstract