Quantum error mitigation, a data processing technique for recovering the statistics of target processes from their noisy version, is a crucial task for near-term quantum technologies. Most existing methods require prior knowledge of the noise model or the noise parameters. Deep neural networks have the potential to lift this requirement, but current models require training data produced by ideal processes in the absence of noise. Here we build a neural model that achieves quantum error mitigation without any prior knowledge of the noise and without training on noise-free data. To achieve this feature, we introduce a quantum augmentation technique for error mitigation. Our approach applies to quantum circuits and to the dynamics of many-body and continuous-variable quantum systems, accommodating various types of noise models. We demonstrate its effectiveness by testing it both on simulated noisy circuits and on real quantum hardware.
Read full abstract