The processes which occur after molecules absorb light underpin an enormous range of fundamental technologies and applications, including photocatalysis to enable new chemical transformations, sunscreens to protect against the harmful effects of UV overexposure, efficient photovoltaics for energy generation from sunlight, and fluorescent probes to image the intricate details of complex biomolecular structures. Reflecting this broad range of applications, an enormously versatile set of experiments are now regularly used to interrogate light-driven chemical dynamics, ranging from the typical ultrafast transient absorption spectroscopy used in many university laboratories to the inspiring central facilities around the world, such as the next-generation of X-ray free-electron lasers.Computer simulations of light-driven molecular and material dynamics are an essential route to analyzing the enormous amount of transient electronic and structural data produced by these experimental sources. However, to date, the direct simulation of molecular photochemistry remains a frontier challenge in computational chemical science, simultaneously demanding the accurate treatment of molecular electronic structure, nuclear dynamics, and the impact of nonadiabatic couplings.To address these important challenges and to enable new computational methods which can be integrated with state-of-the-art experimental capabilities, the past few years have seen a burst of activity in the development of "direct" quantum dynamics methods, merging the machine learning of potential energy surfaces (PESs) and nonadiabatic couplings with accurate quantum propagation schemes such as the multiconfiguration time-dependent Hartree (MCTDH) method. The result of this approach is a new generation of direct quantum dynamics tools in which PESs are generated in tandem with wave function propagation, enabling accurate "on-the-fly" simulations of molecular photochemistry. These simulations offer an alternative route toward gaining quantum dynamics insights, circumventing the challenge of generating ab initio electronic structure data for PES fitting by instead only demanding expensive energy evaluations as and when they are needed.In this Account, we describe the chronological evolution of our own contributions to this field, focusing on describing the algorithmic developments that enable direct MCTDH simulations for complex molecular systems moving on multiple coupled electronic states. Specifically, we highlight active learning strategies for generating PESs during grid-based quantum chemical dynamics simulations, and we discuss the development and impact of novel diabatization schemes to enable direct grid-based simulations of photochemical dynamics; these developments are highlighted in a series of benchmark molecular simulations of systems containing multiple nuclear degrees of freedom moving on multiple coupled electronic states. We hope that the ongoing developments reported here represent a major step forward in tools for modeling excited-state chemistry such as photodissociation, proton and electron transfer, and ultrafast energy dissipation in complex molecular systems.