Abstract

An exact representation of quantum mechanics using the language of phase-space variables provides a natural starting point to introduce and develop semiclassical approximations for the calculation of time correlation functions. Here, we introduce an exact path-integral formalism for calculations of multi-time quantum correlation functions as canonical averages over ring-polymer dynamics in imaginary time. The formulation provides a general formalism that exploits the symmetry of path integrals with respect to permutations in imaginary time, expressing correlations as products of imaginary-time-translation-invariant phase-space functions coupled through Poisson bracket operators. The method naturally recovers the classical limit of multi-time correlation functions and provides an interpretation of quantum dynamics in terms of "interfering trajectories" of the ring-polymer in phase space. The introduced phase-space formulation provides a rigorous framework for the future development of quantum dynamics methods that exploit the invariance of imaginary time path integrals to cyclic permutations.

Full Text
Published version (Free)

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call