Owing to inherent structural instability of perovskite quantum dots, they are instability in humid environments and high temperatures conditions. To address this issue, a simple, environmentally friendly glass encapsulated technology is used to protect the perovskite quantum dots. Meanwhile, the dual-phase perovskite structure realized by phase transition engineering can further increase the stability of perovskite quantum dots. In this study, 3D CsPbBr3/0D Cs4PbBr6 dual-phase coexisting perovskite quantum dot glass powders were synthesized through melt quenching and subsequent crystallization induction of thermal treatment and water molecule, respectively. Results showed that compared with thermal treatment induction, perovskite QDs glass powders by water molecules induction exhibited a high PLQY of 24.7 % with a central wavelength of 519 nm and displayed excellent environmental stability. By combining green fluorescence from 3D CsPbBr3/0D Cs4PbBr6 QDs glass powders and red fluorescence powders (CaAlSiN3:Eu), a WLED device with an impressive EQE of 20.6 % was created, indicating a promising application potential.