Based on the recursive Green-function method together with Landauer–Büttiker formalism, the spin-dependent transport properties of electrons in a zigzag silicene nanoribbon embedding multiple rectangular quantum dots (QDs) are investigated. According to an analysis of the energy band under the periodically distributed electric field and exchange ferromagnetic field, the parallel exchange field induced by the ferromagnetic insulators eliminates the spin degeneracy, which leads to spin-polarized transport in the proposed structure. By tuning a periodic electric field, we found the relationship between the number of QDs and the splitting peak for conductance in the anti-parallel exchange field. We discover the population of electrons near QDs by calculating the local density of states. The effect of the geometry of periodic QDs on the shift of resonance peak is evaluated. The spin polarization is further explored for various configurations of electric field and exchange field in order to manipulate the spin filtering more effectively. The results provide an avenue to design a controllable spin bandpass filter with the modulation of electric field and exchange field.