Abstract
Curvature-mediated lipid-protein interactions are important determinants of numerous vital cellular reactions and mechanisms. Biomimetic lipid bilayer membranes, such as giant unilamellar vesicles (GUVs), coupled with quantum dot (QD) fluorescent probes, provide an avenue to elucidate the mechanisms and geometry of induced protein aggregation. However, essentially all QDs used in QD-lipid membrane studies encountered in the literature are of the cadmium selenide (CdSe) or CdSe core/ZnS shell type, which are quasispherically shaped. We report here the membrane curvature partitioning of cube-shaped CsPbBr3 QDs embedded within deformed GUV lipid bilayers versus that of a conventional small fluorophore (ATTO-488) and quasispherical CdSe core/ZnS shell QDs. In alignment with basic packing theory regarding cubes packed in curved confined spaces, the local relative concentration of CsPbBr3 is highest in areas of lowest relative curvature in the plane of observation; this partitioning behavior is significantly different from that of ATTO-488 (p = 0.0051) and CdSe (p = 1.10 × 10-11). In addition, when presented with only one principal radius of curvature in the observation plane, no significant difference (p = 0.172) was observed in the bilayer distribution of CsPbBr3versus that of ATTO-488, suggesting that both QD and lipid membrane geometry greatly impact the curvature preferences of the QDs. These results highlight a fully-synthetic analog to curvature-induced protein aggregation, and lay a framework for the structural and biophysical analysis of complexes between lipid membranes and the shape of intercalating particles.
Talk to us
Join us for a 30 min session where you can share your feedback and ask us any queries you have
Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.