We investigate cosmological scenarios containing one canonical scalar field with an exponential potential in the context of bouncing models, where the bounce happens due to quantum cosmological effects. The only possible bouncing solutions in this scenario (discarding an infinitely fine tuned exception) must have one and only one dark energy phase, either occurring in the contracting era or in the expanding era. Hence,these bounce solutions are necessarily asymmetric. We calculate the spectral indexes and amplitudes of scalar and tensor perturbations numerically, considering the whole history of the model, including the bounce phase itself, without making any approximation or using any matching condition on the perturbations. As the background model is necessarily dust dominated in the far past, the usual adiabatic vacuum initial conditions can be easily imposed in this era. Hence, this is a cosmological model where the presence of dark energy behavior in the Universe does not turn problematic the usual vacuum initial conditions prescription for cosmological perturbation in bouncing models. Scalar and tensor perturbations end up being almost scale invariant, as expected. The background parameters can be adjusted, without fine tunings, to yield the observed amplitude for scalar perturbations, and also for the ratio between tensor and scalar amplitudes, $r = T/S \lesssim 0.1$. The amplification of scalar perturbations over tensor perturbations takes place only around the bounce, due to quantum effects, and it would not occur if General Relativity has remained valid throughout this phase. Hence, this is a bouncing model where a single field induces not only an expanding background dark energy phase, but also produces all observed features of cosmological perturbations of quantum mechanical origin at linear order.
Read full abstract