Abstract

Coherent state functional integral for the minisuperspace model of loop quantum cosmology is studied. By the well-established canonical theory, the transition amplitude in the path integral representation of loop quantum cosmology with alternative dynamics can be formulated through group averaging. The effective action and Hamiltonian with higher-order quantum corrections are thus obtained. It turns out that for a nonsymmetric Hamiltonian constraint operator, the Moyal (star)-product emerges naturally in the effective Hamiltonian. For the corresponding symmetric Hamiltonian operator, the resulted effective theory implies a possible quantum cosmological effect in large scale limit in the alternative dynamical scenario, which coincides with the result in canonical approach. Moreover, the first-order modified Friedmann equation still contains the particular information of alternative dynamics and hence admits the possible phenomenological distinction between the different proposals of quantum dynamics.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.