In this paper, I reconstruct an argument of Aristidis Arageorgis against empirical underdetermination of the state of a physical system in a C*-algebraic setting and explore its soundness. The argument, aiming against algebraic imperialism, the operationalist attitude which characterized the first steps of Algebraic Quantum Field Theory, is based on two topological properties of the state space: being T1 and being first countable in the weak*-topology. The first property is possessed trivially by the state space while the latter is highly non-trivial, and it can be derived from the assumption of the algebra of observables’ separability. I present some cases of classical and of quantum systems which satisfy the separability condition, and others which do not, and relate these facts to the dimension of the algebra and to whether it is a von Neumann algebra. Namely, I show that while in the case of finite-dimensional algebras of observables the argument is conclusive, in the case of infinite-dimensional von Neumann algebras it is not. In addition, there are cases of infinite-dimensional quasilocal algebras in which the argument is conclusive. Finally, I discuss Porrmann's construction of a net of local separable algebras in Minkowski spacetime which satisfies the basic postulates of Algebraic Quantum Field Theory.
Read full abstract