We first recall a canonical procedure for the construction of the invariant differential operators and equations for arbitrary complex or real noncompact semisimple Lie groups. Then we present the application of this procedure to the case of quantum groups. In detail is given the construction of representations of the quantum algebra U q (sl(n)) labelled by n−1 complex numbers and acting in the spaces of functions of n(n−1)/2 noncommuting variables, which generate a q-deformed SL(4) flag manifold. The conditions for reducibility of these representations and the procedure for the construction of the q-difference intertwining operators are given. Using these results for the case n=4 we propose infinite hierarchies of q-difference equations which are q-conformal invariant. The lowest member of one of these hierarchies are new q-Maxwell equations. We propose also new q-Minkowski spacetime which is part of a q-deformed SU(2,2) flag manifold.
Read full abstract