In this work, we propose an alternative path to establish a gauge theory for magnetic monopoles. The approach involves a simple improvement of the original formulation by Dirac and is based on utilizing non-global potentials associated with Dirac strings. In the present case, we adopt the concept of generalized vector fields to build up generalized gauge potentials for the electromagnetic fields. The main advantage is to work with just one single global (generalized) vector potential to describe the monopole field throughout the entire space, except at the point where the monopole is located, rather than adopting multi-valued functions. We argue that the treatment presented in this paper also leads to electric charge quantization, similar to the case with the Dirac monopoles. We discuss the point-like source associated with the monopole we hope it could be helpful for the search of magnetic monopoles in the laboratory.