Numerous traits under migration–selection balance are shown to exhibit complex patterns of genetic architecture with large variance in effect sizes. However, the conditions under which such genetic architectures are stable have yet to be investigated, because studying the influence of a large number of small allelic effects on the maintenance of spatial polymorphism is mathematically challenging, due to the high complexity of the systems that arise. In particular, in the most simple case of a haploid population in a two-patch environment, while it is known from population genetics that polymorphism at a single major-effect locus is stable in the symmetric case, there exist no analytical predictions on how this polymorphism holds when a polygenic background also contributes to the trait. Here we propose to answer this question by introducing a new eco-evo methodology that allows us to take into account the combined contributions of a major-effect locus and of a quantitative background resulting from small-effect loci, where inheritance is encoded according to an extension to the infinitesimal model. In a regime of small variance contributed by the quantitative loci, we justify that traits are concentrated around the major alleles, according to a normal distribution, using new convex analysis arguments. This allows a reduction in the complexity of the system using a separation of time scales approach. We predict an undocumented phenomenon of loss of polymorphism at the major-effect locus despite strong selection for local adaptation, because the quantitative background slowly disrupts the rapidly established polymorphism at the major-effect locus, which is confirmed by individual-based simulations. Our study highlights how segregation of a quantitative background can greatly impact the dynamics of major-effect loci by provoking migrational meltdowns. We also provide a comprehensive toolbox designed to describe how to apply our method to more complex population genetic models.
Read full abstract