Laboratory and digital rock physics study of a Cretaceous limestone reservoir in Abu Dhabi, United Arab Emirates, provides insights into pore connectivity, pore-throat size, and permeability distributions. The procedure involves core analysis at different scales using micro-computed tomography, scanning electron microscopy, and nano-computed tomography; porosity quantification using segmentation techniques; numerical simulation of permeability using lattice Boltzmann method; and upscaling simulation results to core-plug scale using Darcy's Law. The greater proportion of connected versus poorly interconnected pores is attributed to (i) the formation of early diagenetic grain-rimming calcite cement, which reduced the degree of mechanical compaction and pore-throat size reduction, (ii) limited introduction of carbonate mud by bioturbation due to rapid sediment burial, and (iii) dissolution of allochems and partial dolomitization of micrite matrix. Microbial micritization of allochems at the seafloor led to the transformation of grain-supported limestones, dominated by unimodal macropores, into reservoirs with multimodal porosity. Conversely, the mud–supported limestones have depositional unimodal micropore distribution, which is reduced by mechanical compaction and cementation by calcite micro-overgrowths around micrite particles. Good agreement between laboratory and simulated values suggests that lateral facies and related textural variation across different depositional environments have limited implications for digital rock physics techniques in predicting the petrophysical properties of limestone reservoirs. Nevertheless, careful selection of representative elementary volume within a geologic context for a complex, anisotropic limestone reservoir is the key to achieving reliable results.
Read full abstract