Automated tools for quantification of idiopathic pulmonary fibrosis (IPF) can aid in ensuring reproducibility, however their complexity and costs can differ substantially. In this retrospective study, two automated tools were compared in 45 patients with biopsy proven (12/45) and imaging-based (33/45) IPF diagnosis (mean age 74 ± 9 years, 37 male) for quantification of pulmonary fibrosis in CT. First, a tool that identifies multiple characteristic lung texture features was applied to measure multi-texture fibrotic lung (MTFL) by combining the amount of ground glass, reticulation, and honeycombing. Opacity-based fibrotic lung (OFL) was measured by a second tool that performs a simpler binary classification of tissue into either normal or opacified lung and was originally developed for quantifying pneumonia. Differences in quantification of MTFL and OFL were assessed by Mann-Whitney U-test and Pearson correlation (r). Also, correlation with spirometry parameters (percent predicted total lung capacity (TLC), percent predicted vital capacity (VC), percent predicted forced expiratory volume in 1 s (FEV1), diffusing capacity of the lungs for carbon monoxide (DLCO), partial pressure of oxygen (PO2) and carbon dioxide (PCO2)) were assessed by r. The prognostic values for 3-year patient survival of OFL, LSS and MTFL were investigated by multivariable Cox-proportional-hazards (CPH) models including sex, age and TLC and including sex, age and VC. Also, Kaplan-Meier analysis with log rank test between subgroups separated by median OFL and MTFL were conducted. No significant difference between OFL and MTFL was observed (median and interquartile range: OFL = 29% [20-38%], MTFL = 31% [19-45%]; P = 0.44). For OFL significant correlation was observed to MTFL (r = 0.93, P < 0.01) and VC (r=-0.50, P = 0.03). For MTFL no significant correlation to spirometry parameters was found. The total time for one analysis was lower for the automated MTFL (MTFL: 313 ± 25s vs. OFL: 612 ± 61s, P < 0.001). Both analyses were significant predictors in the multivariable CPH analysis including TLC (hazard-ratios: MTFL 1.03 [1.01–1.06], P = 0.02; OFL 1.03 [1.00-1.06], P = 0.03). No parameter was a significant predictor in the CPH models including VC (hazard-ratios: MTFL 1.01 [0.98–1.04], P = 1; OFL 1.01 [0.97–1.05], P = 1). OFL showed significance in Kaplan-Meier analysis (MTFL: P = 0.17; OFL: P = 0.03). Using a simple opacity-based quantification of pulmonary fibrosis in IPF patients displayed similar results and prognostic value compared to a more complex multi-texture based analysis.
Read full abstract