The urban water environment, an integral component of the terrestrial hydrosphere, is closely linked to human activities and serves as a fundamental resource for industrial and agricultural development. Sedimentary organic matter in water bodies contains rich biological, physical, and chemical information, playing a central role in nutrient cycling and serving as a primary reservoir for nutrient accumulation. This study assesses the water quality, chemical indicators, and sediment productivity of four typical urban water bodies (Canal, Pond, Lake, and River) in Shaoxing City, eastern China. The results show that artificial water bodies, particularly canals, have higher dissolved oxygen (DO) compared to natural water bodies. Stationary water bodies, such as lakes and ponds, generally have higher total dissolved solids (TDS) and electrical conductivity (EC) than flowing water bodies like rivers and canals. All four urban water body types slightly exceed China’s Class-V water quality standard for total nitrogen (TN), with canals, lakes, ponds, and rivers averaging 1.29, 1.22, 1.23, and 1.23 times the standard, respectively. Ponds exhibit the highest total dissolved nitrogen (TDN) content, while ammonium (NH4+–N) and nitrate (NO3−–N) levels are relatively consistent across the bodies, except for lower NO3−–N in lakes. Higher organic matter in canals and lakes, indicated by chlorophyll-a (Chl-a) and permanganate index (CODMn), suggests greater eutrophication compared to ponds and rivers. Sediment total organic nitrogen (TON) content is relatively uniform across all water bodies, with slightly higher values in lakes and rivers. Total organic carbon (TOC) content is highest in lake sediments, 1.51 times that of canals. Carbon/nitrogen (C/N) ratios vary, with ponds and lakes showing the highest averages. Source quantification using isotopic analysis (δ13C and δ15N values) indicates that phytoplankton is the primary sedimentary organic matter source in rivers and canals, while terrestrial sources are significant in lakes and ponds. Sewage notably contributes to rivers and canals. These findings highlight the need for targeted pollution control strategies, focusing on phytoplankton and sewage as key sedimentary organic matter sources to mitigate eutrophication and enhance water quality in urban environments.
Read full abstract