A social network is a typical scale-free network with power-law degree distribution characteristics. It demonstrates several natural imbalanced clusters when it is abstracted as a graph, and expands quickly under its generative mechanism. Hypergraph is superior for modeling multi-user operations in social networks, and partitioning the hypergraph modeled social networks could ease the scaling problems. However, today's popular hypergraph partitioning tools are not sufficiently scalable; thus, unable to achieve high partitioning quality for naturally imbalanced datasets. Recently proposed hypergraph partitioner, hyperpart, replaces the balance constraint with an entropy constraint to achieve high-fidelity partitioning solutions, but it is not tailored for scale-free networks, like social networks. In order to achieve scalable and high quality partitioning results for hypergraph modeled social networks, we propose a partitioning method, EQHyperpart, which utilizes information-Entropy-based modularity Q value (EQ) to direct the hypergraph partitioning process. This EQ considers power-law degree distribution while describing the “natural” structure of scale-free networks. We then apply simulated annealing and introduce a new definition of hyperedge cut, micro cut, to avoid the local minima in convergence of partitioning, developing EQHyperpart into two specific partitioners, namely: EQHyperpart-SA and EQHyperpart-MC. Finally, we evaluate the utility of our proposed method using classical social network datasets, including Facebook dataset. Findings show that EQHyperpart partitioners are more scalable than competing approaches, achieving a tradeoff between modularity retaining and cut size minimizing under balance constraints, and an auto-tradeoff without balance constraints for hypergraph modeled social networks.
Read full abstract