This research focuses on examining the potential impact of charcoal briquettes and lumps on human health due to the emissions they release, and verifying their quality standards. Quality assessment was conducted using a device capable of measuring toxic gases to identify contaminants from various sources such as biomass, synthetic resins, coal, metals, and mineral matter. Toxicity assessments were carried out on five types of briquettes and two varieties of lump charcoal. All charcoal samples were subjected to elemental analysis (SEM/EDAX), including the examination of Ca, Al, Cr, V, Cu, Fe, S, Sr, Si, Ba, Pb, P, Mn, Rb, K, Ti, and Zn. The results showed that burning lump charcoal had toxicity indexes ranging from 2.5 to 5, primarily due to NOx emissions. Briquettes, on the other hand, exhibited higher toxicity indices between 3.5 and 6.0, with CO2 being the main contributor to toxicity. The average 24-h CO content of all charcoal samples exceeded the World Health Organization's 24-h Air Quality Guideline of 6.34ppm, with a measurement of 37ppm. The data indicates that most of the products tested did not meet the prevailing quality standard (EN 1860-2:2005 (E) in Appliances, solid fuels and firelighters for barbecuing-Part 2: Barbecue charcoal and barbecue charcoal briquettes-Requirements and test method, 2005), which specifies a maximum of 1% contaminants, with some products containing as much as 21% impurities. The SEM analysis revealed irregularly shaped grains with an uneven distribution of particles, and the average particle size distribution is quite broad at 5μm. Malaysia Charcoal had the highest calorific value at 32.80MJ/Kg, with the value being influenced by the fixed carbon content-higher carbon content resulting in a higher calorific value.