The use of renewable energy sources (RESs) together with energy storage systems (ESSs) allows for smoothing power variations, thus improving power backup capabilities and power quality in the electric power grid. These applications require power converters to transfer energy between the renewable generator or energy storage and the power grid. In any case, the control algorithm of the power converter requires the synchronization method to provide a correct estimation of the instantaneous voltage of the power grid. This work provides engineers and researchers with an accessible platform at a low cost (less than USD 100) and a methodology for the experimental validation of digital synchronization algorithms as a step before their implementation in grid-connected equipment. The methodology evaluates the performance of the digital algorithms when there are variations in amplitude, frequency, phase, and harmonic content in the emulated three-phase power grid, as well as the execution times (tex), while a digital platform emulates the electrical signals and generates reference signals for the evaluation. To illustrate this proposal, two synchronization algorithms—SRF-PLL and DSOGI-PLL with a low-pass filter—are implemented in a digital controller and tested. The evaluation tool confirms the algorithms’ performance and shows that the execution time of DSOGI-PLL is 91% longer than that of SRF-PLL, which is well known in the literature.
Read full abstract