Background: High-definition maps can provide necessary prior data for autonomous driving, as well as the corresponding beyond-line-of-sight perception, verification and positioning, dynamic planning, and decision control. It is a necessary element to achieve L4/L5 unmanned driving at the current stage. However, currently, high-definition maps still have problems such as a large amount of data, a lot of data redundancy, and weak data correlation, which make autonomous driving fall into difficulties such as high data query difficulty and low timeliness. In order to optimize the data quality of high-definition maps, enhance the degree of data correlation, and ensure that they better assist vehicles in safe driving and efficient passage in the autonomous driving scenario, it is necessary to clarify the information system thinking of high-definition maps, propose a complete and accurate model, determine the content and functions of each level of the model, and continuously improve the information system model. Objective: The study aimed to put forward a complete and accurate high-definition map information system model and elaborate in detail the content and functions of each component in the data logic structure of the system model. Methods: Through research methods such as the modeling method and literature research method, we studied the high-definition map information system model in the autonomous driving scenario and explored the key technologies therein. Results: We put forward a four-layer integrated high-definition map information system model, elaborated in detail the content and functions of each component (map, road, vehicle, and user) in the data logic structure of the model, and also elaborated on the mechanism of the combined information of each level of the model to provide services in perception, positioning, decision making, and control for autonomous driving vehicles. This article also discussed two key technologies that can support autonomous driving vehicles to complete path planning, navigation decision making, and vehicle control in different autonomous driving scenarios. Conclusions: The four-layer integrated high-definition map information model proposed by this research institute has certain application feasibility and can provide references for the standardized production of high-definition maps, the unification of information interaction relationships, and the standardization of map data associations.