Abstract. Electron–nuclear double resonance (ENDOR) spectroscopy is an EPR technique to detect the nuclear frequency spectra of hyperfine coupled nuclei close to paramagnetic centers, which have interactions that are not resolved in continuous wave EPR spectra and may be fast relaxing on the timescale of NMR. For the common case of non-crystalline solids, such as powders or frozen solutions of transition metal complexes, the anisotropy of the hyperfine and nuclear quadrupole interactions renders ENDOR lines often several megahertz (MHz) broad, thus diminishing intensity. With commonly used ENDOR pulse sequences, only a small fraction of the NMR/ENDOR line is excited with a typical radiofrequency (RF) pulse length of several tens of microseconds (µs), and this limits the sensitivity in conventional ENDOR experiments. In this work, we show the benefit of chirped RF excitation in frequency-domain ENDOR as a simple yet effective way to significantly improve sensitivity. We demonstrate on a frozen solution of Cu(II)-tetraphenylporphyrin that the intensity of broad copper and nitrogen ENDOR lines increases up to 9-fold compared to single-frequency RF excitation, thus making the detection of metal ENDOR spectra more feasible. The tunable bandwidth of the chirp RF pulses allows the operator to optimize for sensitivity and choose a tradeoff with resolution, opening up options previously inaccessible in ENDOR spectroscopy. Also, chirp pulses help to reduce RF amplifier overtones, since lower RF powers suffice to achieve intensities matching conventional ENDOR. In 2D triple resonance experiments (TRIPLE), the signal increase exceeds 10 times for some lines, thus making chirped 2D TRIPLE experiments feasible even for broad peaks in manageable acquisition times.
Read full abstract