An efficient and accurate multi-scale induction machine model for simulating diverse transients in power systems is developed and validated. Voltages, currents, and flux linkages are described through analytic signals that consist of real in-phase and imaginary quadrature components, covering only positive frequencies of the Fourier spectrum. The stator is modeled in the abc phase coordinates of an arbitrary reference frame whose rotating speed is adjusted by a simulation parameter called shift frequency. When the reference frame is stationary at a zero shift frequency, then the model processes instantaneous signals to yield natural waveforms. When the reference frame is set to rotate at the synchronous frequency of the electric network, then the Fourier spectra of the analytic signals are shifted by this synchronous frequency to become dynamic phasors that allow for efficient envelope tracking. The shift frequency can be adapted during simulation. For any rotor position and independent of the variation of the magnetizing inductances with saturation, the induction machine model appears as a Norton current source with constant inner admittance in the abc phase domain to support the integration with simulators that represent the electric network in the abc phase domain. The analysis of test cases covering diverse transients substantiates the claims made in terms of accuracy and efficiency across different time scales.
Read full abstract