Multigrid methods are developed and analyzed for quadratic spline collocation equations arising from the discretization of one-dimensional second-order differential equations. The rate of convergence of the two-grid method integrated with a damped Richardson relaxation scheme as smoother is shown to be faster than 1/2, independently of the step-size. The additive multilevel versions of the algorithms are also analyzed. The development of quadratic spline collocation multigrid methods is extended to two-dimensional elliptic partial differential equations. Multigrid methods for quadratic spline collocation methods are not straightforward: because the basis functions used with quadratic spline collocation are not nodal basis functions, the design of efficient restriction and extension operators is nontrivial. Experimental results, with V-cycle and full multigrid, indicate that suitably chosen multigrid iteration is a very efficient solver for the quadratic spline collocation equations.