Intestines contain a large number of microorganisms that collectively play a vital role in regulating physiological and biochemical processes, including digestion, water balance, and immune function. In this study, we explored the effects of ammonia stress on intestinal inflammation, the antioxidant system, and the microbiome of the Asian clam (Corbicula fluminea). Exposure to varying ammonia concentrations (10 and 25 mg N/L) and exposure times (7 and 14 days) resulted in damage to C. fluminea intestinal tissue, according to histological analysis. Furthermore, intestinal inflammatory responses and damage to the antioxidant system were revealed through qPCR, ELISA, and biochemical analysis experiments. Inflammatory responses were more severe in the treatment group exposed to a lower concentration of ammonia. High-throughput 16S rDNA sequencing showed that ammonia stress under different conditions altered intestinal bacterial diversity and microbial community composition, particularly impacting the dominant phylum Proteobacteria and genus Aeromonas. These results indicate that ammonia stress can activate intestinal inflammatory reactions, damage the intestinal antioxidant system, and alter intestinal microbial composition, thereby impeding intestinal physiological function and seriously threatening the health of C. fluminea.
Read full abstract