As an extension of our study to reveal the effect of porphyrin deformation on the [Formula: see text]C and1H NMR chemical shifts, both five- and six-coordinate high-spin (S [Formula: see text] 2) Mn(III) complexes such as Mn(Por)Cl and [Mn(Por)(CD3OD)2]Cl have been prepared, where Por is a porphyrin dianion such as TPP, OMTPP, and T[Formula: see text]PrP. Molecular structures of five-coordinate Mn(OMTPP)Cl and Mn(TiPrP)Cl have been determined by the X-ray crystallographic analysis. As expected, Mn(OMTPP)Cl and Mn(TiPrP)Cl have exhibited a highly saddled and highly ruffled porphyrin core, respectively. The [Formula: see text]C NMR spectra have revealed that these complexes generally exhibit the [Formula: see text]-pyrrole signals at the downfield positions and [Formula: see text]-pyrrole an. meso signals at the upfield positions. The results suggest that the spin polarization of Mn(III)–NPσ bonds, which occurs in all the high-spin Mn(III) complexes, is the major factor to determine the chemical shifts of the porphyrin carbon signals (Cheng, R.-J.; Chang, S.-H.; Hung, K.-C. Inorg. Chem. 2007; 46: 1948–1950). Although th. meso and [Formula: see text]-pyrrole signals are observed at the upfield and downfield positions, respectively, these signals are widely dispersed depending on the deformation mode of the porphyrin ring. The results have been explained in terms of the strong spin polarization of the Mn–NPbond together with the specific metal-porphyrin orbital interactions such as: (i) the a2u-dz2 interaction in five-coordinate complexes, (ii) the a2u-dxyinteraction in ruffled complexes, and (iii) the a2u-dx2-y2 interaction in saddled complexes.