This study explores copyrolysis of soybean straw (SS) with hydrogen-rich tire waste (TW) to enhance pyrolytic product quality and reduce pollutant emissions. Addition of TW increased SS biomass conversion from 67.19 to 72.46% and decreased coke/residue formation from 32.81 to 27.54%. The activation energy dropped to 121.84 kJ/mol from 160.73 kJ/mol (as calculated by the Kissinger-Akahira-Sunose method) and 122.78 kJ/mol from 159.76 kJ/mol (as calculated by the Ozawa-Flynn-Wall method). Thermogravimetric analysis coupled with Fourier-transform infrared spectroscopy (TG-FTIR) showed lowered CO2, NO2, and SO2 emissions (5.58, 5.72, 3.38) compared to conventional SS pyrolysis (18.38, 11.55, 12.37). Yields of value-added chemicals (phenols, olefins, aromatics) increased (32.38, 22.17, 30.18%) versus conventional SS pyrolysis (23.56, 13.78, 20.36%). Pyrolysis gas chromatography-mass spectrometry (Py/GC-MS) analysis reveals that the addition of TW leads to a decrease in the production of oxygenates and polycyclic aromatic hydrocarbons, reducing their yields to 8.96 and 7.67%, respectively, down from 19.37 and 14.37%. Simultaneously, it enhances the yields of olefins, aromatics, phenols, and aliphatic hydrocarbons to 23.38, 26.78, 26.17, and 25.78%, respectively, compared to 15.37%, 15.29, 18.36, and 17.25%, respectively, in the absence of TW. In summary, copyrolysis of TW with SS improves product quality and reduces pollutant emissions, marking a significant research contribution.