The profile distributions of specific sulfur forms were examined at a site in a Louisiana salt marsh over a 1-yr period. Soil samples were fractionated into acid-volatile sulfides, HCl-soluble sulfur, elemental sulfur, pyrite sulfur, ester-sulfate sulfur, carbon-bonded sulfur, and total sulfur. Inorganic sulfur constituted 16% to 36% of total sulfur, with pyrite sulfur representing <2%. Pyrite sulfur content in marsh soil was relatively high in winter. Pyrite sulfur and elemental sulfur together accounted for 4% to 24% of the inorganic sulfur fraction. Between 74% and 95% of inorganic sulfur was present as the HCl-soluble sulfur form. A significant negative correlation between acid-volatile sulfides and elemental sulfur observed in summer suggested the transformation of fulfides to elemental sulfur. Organic sulfur, in the forms of ester-sulfate sulfur and carbon-bonded sulfur, predominated in all sampling periods, comprising 64% to 84% of total sulfur. The conversion of ester-sulfate sulfur into carbon-bonded sulfur was more likely to occur in winter than in other seasons. Carbon-bonded sulfur accounted for 53% to 89% of the organic sulfur. Organic sulfur was the major contributor to the variation of total sulfur in all seasons studied. Total sulfur concentration showed a statistically significant increase with depth.
Read full abstract