Intervertebral discs (IVDs) have a limited self-regenerative capacity and current strategies for IVD regeneration are unsatisfactory. Recent studies showed that small extracellular vesicles derived from M2 macrophage cells (M2-sEVs) inhibited inflammation by delivery of various bioactive molecules to recipient cells, which indicated that M2-sEVs may offer a therapeutic strategy for the repair of IVDs. Herein, we investigated the roles and mechanisms of M2-sEVs on IVD regeneration. The invitro results demonstrated that M2-sEVs inhibited pyroptosis, preserved cellular viability, and promoted migration of nucleus pulposus cells (NPCs). Bioinformatics analysis and verification experiments of microRNA (miR) expression showed that miR-221-3p was highly expressed in M2-sEVs. The mechanism of action was explored and indicated that M2-sEVs inhibited pyroptosis of NPCs through transfer of miR-221-3p, which suppressed the expression levels of phosphatase and tensin homolog and NOD-, LRR-, and pyrin domain-containing protein 3. Moreover, we fabricated decellularized ECM-hydrogel (dECM) for sustained release of M2-sEVs, which exhibited biocompatibility and controlled release properties. The invivo results revealed that dECM-hydrogel containing M2-sEVs (dECM/M2-sEVs) delayed the degeneration of intervertebral disc degeneration (IDD) models. In addition to demonstrating a promising therapeutic for IDD, this study provided valuable data for furthering the understanding of the roles and mechanisms of M2-sEVs in IVD regeneration.