Metal-free carbon materials (MFCMs) have extensive applications in electrocatalysis because of their comparable catalytic activity to that of Pt/C in some cases. Understanding the structure-property relationship is crucial for the reasonable design of more efficient catalysts. To reveal the structure-property relationship of the hydrogen evolution reaction (HER), we prepared nanowire model catalysts on single-crystalline Au(111) electrodes through state-of-the-art on-surface synthesis. Temperature-dependent experiments were conducted to evaluate the HER activity of the nanoribbons functionalized with pyridinic nitrogen and diacetylene. According to our electrochemical results (overpotential, current density j0, and apparent activation energy), we demonstrate that the participation of diacetylene can promote the catalytic reaction for the HER through a synergistic effect. Based on the analysis of the activation entropy for the model catalysts, we attribute the synergistic effect of diacetylene groups to the large area of π···H-O bonding in the electric double layer, thus providing direct insight into the structural-property relationship of polymerized nanoribbons for the HER through the rational design of precursor structures. The nanoribbons prepared by on-surface synthesis can serve as prototype systems for model catalytic research on MFCMs.
Read full abstract