The transition metal-catalyzed direct coupling reactions involving electron-rich Fischer carbene species are largely underdeveloped and remain a big challenge. Here, a direct coupling reaction of azoles and azine N-oxides is reported with Fischer copper carbene species bearing an α-siloxy group i, which can be in situ generated from acylsilanes catalytically under photoirradiation and redox-neutral conditions. This coupling reaction between electron-rich α-siloxy Fischer Cu-carbene species with hard carbanion nucleophiles may undergo a bimetallic relay process, which is confirmed by the kinetic analysis and in situ NMR analysis. This reaction features mild conditions and remarkable heterocycle compatibility. Notably, this protocol tolerates a series of azole or azine N-oxide derivatives, including benzoxazole, benzothiazole, benzoimidazole, benzoisoxazole, oxazole, oxadiazole, triazolo[4,3-a]pyridine, purine, caffeine, pyridine N-oxide, quinoline N-oxide, pyrazine N-oxide, pyridazine N-oxide, etc. The synthetic value of this approach is demonstrated by the efficient synthesis of a histamine h4 receptor ligand and a marketed drug carbinoxamine.