Residues of pyrethroid insecticides tend to accumulate in bed sediments due to their strong hydrophobicity. Rather than the total or bulk sediment concentration, it is the freely dissolved concentration (Cfree) that drives toxicity to benthic invertebrates. In this study we developed thin film-based samplers for in situ ambient monitoring of pyrethroids at trace levels in sediment. Out of five common polymer materials, polyethylene (PE) and silicone rubber (SR), were identified to offer superior enrichment for pyrethroids from sediment. To circumvent the slow equilibrium process, 13C-permethrin and bifenthrin-d5 were preloaded onto the films as performance reference compounds (PRCs). The PRC-preloaded film samplers were deployed at five sites in Southern California under field conditions for 7 d and retrieved for analysis. The sediment porewater Cfree of eight pyrethroids derived from PRC-PE films ranged from 173 to 903 ng/L, accounting for 18.2–36.1% of the corresponding total porewater concentrations. The PRC-SR film samplers yielded Cfree values closely mimicking those from the PRC-PE samplers, cross-validating the two sampling devices. Additionally, a significant positive association was found between the observed mortality from toxicity tests using Hyalella azteca and the Cfree of bifenthrin (r = 0.628, p = 0.02). A significant linear correlation (R2 = 0.99) between Cfree derived from in situ monitoring and that of ex situ measurement under equilibrium conditions was also observed. Results from this study demonstrated that the film-based samplers may be used for in situ ambient monitoring to detect biologically relevant contamination of pyrethroids in bed sediments, which may contribute to improved risk assessment for this class of widely used insecticides.