Pyrethroids are a class of widely used insecticides. Our recent epidemiological study of Chinese women reported that pyrethroid exposure was positively associated with the risk of primary ovarian insufficiency (POI). In this study, we utilized cypermethrin (CP), the most frequently detected pyrethroid in the environment, to recognize how lifelong and low-dose exposure to pyrethroids affects ovarian functions and the underlying mechanism(s). Female mice were exposed to CP at doses of human dietary intake of 6.7 μg/kg/day, an acceptable daily intake (ADI) of 20 μg/kg/day, or the chronic reference dose (RfD) of 60 μg/kg/day, starting from gestational day 0.5 until 44-week-old. We assessed effects on fertility, serum hormone levels, ovarian follicular development and ovarian transcriptomic profiles. Chronic exposure to CP at doses of ADI and RfD caused a significant reduction in the size of the primordial follicle pool on postnatal day (PND) 5 and the number of all types of follicles in 44-week-old mice, lower estrogen and higher gonadotropin levels, as well as decreased fertility. Significant increase in apoptosis and decrease in cell proliferation were observed in CP-exposed ovarian follicles from PND 5 and 44-week-old mice. Ovarian transcriptomic data showed that the pro-apoptotic protein BMF and the cell cycle inhibitor p27 were significantly up-regulated in CP-exposed ovaries. Cyp17a1, Cyp19a1 and Hsd17b1 genes involved in the key steps of steroidogenesis were down-regulated in the ovaries of female mice exposed to CP. This study first reported that lifelong exposure to CP at doses of ADI or RfD caused an ovarian phenotype similar to human POI in female mice and provided a mechanistic explanation. Our findings suggest that lifelong exposure to pyrethroids of low doses, which are recommended as ‘safe’ dosages, may have a significant impact on the ovarian health of female mammals and humans.