In many arthropods, the development of the trunk region is a complex part of post-embryonic development. Consideration of fossil ontogeny provides an additional source of data and a broader evolutionary perspective on the evolution of arthropod body patterning. Here, I examine the development of the thoraco-pygidial exoskeleton of three related phacopine trilobites from the Upper Devonian according to the integrated ontogenetic scheme proposed by Hughes et al. Pygidial shields assigned to three ontogenetic series gave us the opportunity to further explore the evolutionary pattern of the trilobite segmentation. The analysis showed a different mode of development in two of three species and thus reveals variability between the related taxa. Comparison of the boundaries of different aspects of ontogenesis ratifies the diversity of the segmentation process among trilobites and even among related phacopine species. Results include (i) in a synarthromeric trunk condition recorded to date, there has consistently been a preceding ‘equilibrium’ phase for the late meraspid pygidium and (ii) two developmental modes, i.e. both hypoprotomeric development and synarthromeric development, occur contemporaneously in closely related taxa. Such developments suggest that aspects of segmental development such as segment accretion and segment articulation were able to vary in a labile manner.
Read full abstract