The current study conducts energy and exergy analyses on an innovative hybrid perforated photovoltaic/solar air heater (PV/SAH) using passive and active methods to improve thermal and electrical efficiencies. Since increasing PVs’ temperature reduces their electrical efficiency, various techniques have been employed to handle this problem, employing effective cooling strategies. This study uses an experimental approach to analyze two cooling strategies: encapsulated phase change material (PCM) units as a passive method and forced-convection mechanism as an active method. Two scenarios were considered: hybrid PV/SAH with and without encapsulated PCM units at two mass flow rates of 0.05 kg/s and 0.07 kg/s. The results illustrate that the encapsulated PCM reduced the PV and outlet temperatures by 2 °C and 4 °C, and 3 °C and 1.5 °C at the mass flow rates of 0.05 kg/s and 0.07 kg/s, respectively. The lower the outlet temperature, the lower the thermal efficiency. Hence, using the PCM units decreased the thermal efficiency but improved the electrical efficiency. The PCM units caused a reduction in daily overall energy efficiency by 12.41 % and 8.36 % at the mass flow rates of 0.05 kg/s and 0.07 kg/s due to reducing thermal efficiency. Unlike the energy efficiency, the PCM units improved the daily overall exergy efficiency by 6.28 % and 8.71 % at the mass flow rates considered. Hence, using passive and active methods is a robust technique to improve the hybrid systems’ performance.
Read full abstract