Porphyromonas gingivalis is a Gram-negative, anaerobic oral pathobiont, an etiological agent of periodontitis and the most commonly studied periodontal bacterium. Multiple low passage clinical isolates were sequenced, and their genomes compared to several laboratory strains. Phylogenetic distances were mapped, a gene absence-presence matrix generated, and core (present in all genomes) and accessory (absent in one or more genomes) genes delineated. Subsequently, a second pangenome delineating the prevalence of inherently essential genes was generated. The prevalence of genes conditionally essential for surviving tobacco exposure, abscess formation and epithelial invasion was also determined, in addition to genes encoding key proteolytic enzymes containing putative signal peptides. While the absolutely essential pangenome was highly conserved, significant differences in the complete and conditionally essential pangenomes were apparent. Thus, genetic plasticity appears to lie primarily in gene sets facilitating adaptation to variant disease-related environments. Those genes that are highly pervasive in the P. gingivalis absolutely essential pangenome or are highly prevalent and essential for fitness in disease-relevant models, may represent particularly attractive therapeutic targets worthy of further investigation. As mutations in absolutely essential genes are expected to be lethal, the data provided herein should also facilitate improved planning for P. gingivalis gene mutation strategies.