Colombia is ranked 18th in the world in citrus production and contributed 0.9% of the total world share. Among four important citrus-producing regions of Colombia, the Orinoco region (3 to 6°N, 68 to 74°W) consists of two citrus-producing states, Meta and Casanare. Citrus leprosis is the most important viral disease of citrus in Colombia (1,3). Three types of Citrus leprosis virus (CiLV) infect citrus, producing leprosis-like lesion symptoms. Two of the three CiLV species, Citrus leprosis virus cytoplasmic type (CiLV-C) and cytoplasmic type 2 (CiLV-C2), produce particles only in the cytoplasm (3). The other species, Citrus leprosis virus nuclear type (CiLV-N), produces particles in both the cytoplasm and nucleus (4). CiLV-C is more prevalent and destructive while CiLV-N has been reported only in Brazil, Panama, and Mexico (4). Interestingly, both CiLV-C and -C2 were reported from the same regions of Meta and Casanare States in Colombia in 2004 and 2012 (1,3). CiLV-C lesions are usually rounded (initially 2 to 3 mm in diameter and extending up to 30 mm), have dark-brown or greenish central chlorotic spots, and are surrounded by yellow halos. CiLV-N lesions have been described as smaller in size and form three well-defined regions including a necrotic center with an intermediate orange color halo and an outer chlorotic halo (2). In 2013, 'Valencia' sweet orange (Citrus sinensis L.) leaves with suspected CiLV-N symptoms were collected from 8 plants in Casanare State and shipped under permit to the USDA-APHIS-PPQ-CPHST, Beltsville, MD. Total RNA from symptomatic and healthy sweet orange leaves were extracted using the RNeasy Plant Mini Kit (Qiagen, Valencia, CA). RT-PCR primers specific to CiLV-C, CiLV-C2 (3), and CiLV-N nucleocapsid (N) (CiLV-N-NPF: 5'-ATGGCTAACCCAAGTGAGATCGATTA-3'; CiLV-N-NPR: 5'-AGTTGCCTTGAGATCATCACATTGGT-3') and putative matrix protein (M) genes (CiLV-N-MF: 5'-ATGTCTAAACAGATTAATATGTGCACTGTG-3'; CiLV-N-MR: 5'-CTAACCACTGGGTCCCGC-3') were utilized to identify the CiLV associated with the leprosis-affected leaf samples from Casanare. RT-PCR with CiLV-C primers failed to produce any amplicon, but CiLV-N primers successfully amplified the partial N gene (681 bp) and entire M gene (552 nt) amplicons from multiple leaves of all leprosis samples. In addition, a 795-bp amplicon specific to CiLV-C2 also was amplified from the CiLV-N suspected samples. Similar results were obtained when the vector, flat spider mite (Brevipalpus spp.) total RNA was used as template for RT-PCR. For further confirmation, each amplicon was cloned and sequenced. Sequencing of the N and M gene amplicons of CiLV-N (accession nos. KJ195893 and KJ195894) and coat protein gene of CiLV-C2 showed 97 to 99% nucleotide sequence identity with the CiLV-N M2345 isolate sequence (KF209275) from Mexico (4) and CiLV-C2 L147V1 isolate sequence (JX000024) from Colombia (3), respectively. Phylogenetic analyses of these N and M protein gene sequences confirmed a mixed infection of the same plant with two viruses, one from an unassigned new genus Dichorhavirus (CiLV-N) and another from genus Cilevirus (CiLV-C2). This is the first report of CiLV-N in Colombia, and also the first report of an occurrence of CiLV-N in mixed infection with CiLV-C2. All three known species of CiLV occur in the Orinoco region of Colombia.