Abstract

One current theory of the Golgi apparatus views its organization as containing both a matrix fraction of structural proteins and a reservoir of cycling enzymes. During mitosis, the putative matrix protein GM130 is phosphorylated and relocalized to spindle poles. When the secretory pathway is inhibited during interphase, GM130 redistributes to regions adjacent to vesicle export sites on the endoplasmic reticulum (ER). Strikingly, meiotic maturation and fertilization in nonrodent mammalian eggs presents a unique experimental environment for the Golgi apparatus, because secretion is inhibited until after fertilization, and because the centrosome is absent until introduced by the sperm. Here, we test the hypothesis that phosphorylated GM130 associates not with meiotic spindle poles, but with ER clusters in the mature bovine oocyte. At the germinal vesicle stage, phosphorylated GM130 is observed as fragments dispersed throughout the cytoplasm. During meiotic maturation, GM130 reorganizes into punctate foci that associate near the ER-resident protein calreticulin and is notably absent from the meiotic spindle. GM130 colocalizes with Sec23, a marker for ER vesicle export sites, but not with Lens culinaris agglutinin, a marker for cortical granules. Because disruption of vesicle transport has been shown to block meiotic maturation and embryonic cleavage in some species, we also test the hypothesis that fertilization and cytokinesis are inhibited with membrane trafficking disruptor brefeldin A (BFA). Despite Golgi fragmentation after BFA treatment, pronuclei form and unite, and embryos cleave and develop through the eight-cell stage. We conclude that, while the meiotic phosphorylation cycle of GM130 mirrors that of mitosis, absence of a maternal centrosome precludes Golgi association with the meiotic spindle. Fertilization introduces the sperm centrosome that can reorganize Golgi proteins, but neither fertilization nor cytokinesis prior to compaction requires a functional Golgi apparatus.

Talk to us

Join us for a 30 min session where you can share your feedback and ask us any queries you have

Schedule a call

Disclaimer: All third-party content on this website/platform is and will remain the property of their respective owners and is provided on "as is" basis without any warranties, express or implied. Use of third-party content does not indicate any affiliation, sponsorship with or endorsement by them. Any references to third-party content is to identify the corresponding services and shall be considered fair use under The CopyrightLaw.