Transport by ATP-dependent efflux pumps such as P glycoprotein (Pgp) and multidrug resistance associated protein (MRP), encoded by multidrug resistant (MDR) associated genes, is an increasingly recognized mechanism by which cells maintain substrate homeostasis and evade drug therapy. Pgp and MRP are members of the so-called ATP binding cassette (ABC) transporters superfamily, which are associated with many biological processes in both prokaryotes and eukaryotes, as well as clinical problems. The observation of upregulated sequences that are homologous to the Mycobacterium smegmatis phage resistance (mpr) gene and putative ABC transporters subunits in fetal Down syndrome (DS) using the gene hunting technique, subtractive hybridization formed the Rationale for this study. The expression of Pgp and MRP1 is therefore investigated in different brain regions of controls and adult DS patients with western blot technique. No apparent changes were observed between controls and DS in levels of Pgp in all brain regions examined. By contrast, MRP1 detection using the rat monoclonal antibody (MRPr1) produced a significant elevation in DS temporal cortex (P < 0.01) and parietal cortex (P < 0.05). Although MRP1 detected with the mouse monoclonal antibody (MRPm6) tended to increase in most of the regions of DS brain, it failed to reach significance level. Age or postmortem interval did not correlate with protein levels in both controls as well as DS. Taken together, the current data provide evidence for the presence of MDR related pumps in different regions of the human brain. In addition, overexpression of MRP1 in DS brain may have some relevance to the disorder either by deranging substrate homeostasis or limiting drug access.