During the thixoforming process, it is very important to obtain a uniform temperature, which affects the uniformity of the solid fraction, throughout the billet. Consequently, a heating method that can provide a suitable temperature profile throughout the billet must be chosen. Other parameters that must be considered include heating time (in order to minimize the total processing time), the level of control, and temperature consistency. An optimal design of the induction coil has been identified that best meets these criteria. In a previous study, the theoretical optimal coil design was verified through the FEM simulation of the induction heating process by using a general purpose finite element analysis code, ANSYS. So, in this study, the suitability of the coil design was also demonstrated by conducting induction-heating experiments. The optimal reheating conditions to apply the thixoforming (thixoforging and semisolid die casting) process were investigated by varying the reheating time, the holding time, the reheating temperatures, the capacity of the induction heating system, and the size of the adiabatic material. The final holding time was observed to be the most important factor in obtaining a fine globular microstructure and to prevent coarsening in the three-step reheating process.