The effects of biopesticides on insects can be demonstrated by morphological and ultrastructural tools in ecotoxicological analysis. Azadirachtin-based products are widely used as biopesticides, affecting numerous insect populations. Through morphological biomarkers, this study aimed to characterize the fat bodies of both the southern armyworm Spodoptera eridania and the predator Ceraeochrysa claveri after chronic exposure to azadirachtin. Larvae of S. eridania and C. claveri were fed with fresh purple lettuce leaves (Lactuca sativa) and egg clusters of Diatraea saccharalis treated with azadirachtin solution of 6mg active ingredient (a.i.)/L and 18mg a.i./L for 7days, respectively. The biological data showed a significant reduction in survival and body mass in S. eridania and cytotoxic effects in the parietal and perivisceral fat bodies in both species. Ultrastructural cell damage was observed in the trophocytes of both species such as dilated cisternae of the rough endoplasmic reticulum and swollen mitochondria. Trophocytes of S. eridania and C. claveri of the parietal and perivisceral layers responded to those injuries by different cytoprotective and detoxification means such as an increase in the amount of cytoplasmic granules containing calcium, expression of heat shock protein (HSP)70/HSP90, and development of the smooth endoplasmic reticulum. Despite all the different means of cytoprotection and detoxification, they were not sufficient to recover from all the cellular damages. Azadirachtin exhibited an excellent performance for the control of S. eridania and a moderate selectivity for the predator C. claveri, which presents better biological and cytoprotective responses to chronic exposure to azadirachtin.
Read full abstract